Lake Bottom Sediments: An Archive of Historical Human Activity and its Environmental Effects

Kyle Juracek U.S. Geological Survey

Oklahoma Clean Lakes and Watersheds Association Annual Conference

April 2, 2014

Every lake has a story to tell...

...and part of that story is told by the bottom sediment.

Sediment Deposition in Tuttle Creek Lake

Bottom sediment can provide current and historical information about:

- 1. Nutrients.
- **2. Trace elements.**
- 3. Other contaminants.
- 4. Biological indicators.

Which can be used to:

Determine effects of human activity.
Assess habitat quality.
Reconstruct historical conditions.
Assess changes in trophic conditions.
Identify constituents of concern.
Provide a baseline for future assessments.

and a second second

Top 20 Hazardous Substances from the CERCLA Priority List of Hazardous Substances for 2011

- *1. Arsenic
- *2. Lead
- *3. Mercury
 - 4. Vinyl Chloride
- *5. PCBs
 - 6. Benzene
- *7. Cadmium
- *8. Benzo(a)pyrene
- *9. PAHs
- *10. Benzo(b)fluoranthene

*Hydrophobic

- 11. Chloroform
- *12. Aroclor 1260
- *13. DDT
- *14. Aroclor 1254
- *15. Dibenzo(a,h)anthracene
 - 16. Trichloroethylene
- *17. Chromium, hexavalent
- *18. Dieldrin
- *19. Phosphorus, white
- *20. Hexachlorobutadiene

http://www.atsdr.cdc.gov/SPL/index.html

Sediment-Quality Guidelines

Trace	USEPA (1997)		MacDonald et al. (2000)		Bio- accumulation
element	TEL	PEL	TEC	PEC	index ¹
Arsenic	7.24	41.6	9.79	33.0	moderate
Cadmium	.676	4.21	.99	4.98	moderate
Chromium	52.3	160	43.4	111	moderate
Copper	18.7	108	31.6	149	high
Lead	30.2	112	35.8	128	moderate
Mercury	.13	.696	.18	1.06	high
Nickel	15.9	42.8	22.7	48.6	moderate
Silver	.733	1.77			moderate
Zinc	124	271	121	459	high

Values in milligrams per kilogram.

¹source: Pais and Jones (1997)

Sediment Core Collection

Gravity Coring

Box Coring

Constituent Histories

• Selenium

- Lead
- Copper
- DDE
- Biological indicators

Constituent Histories

• Selenium

- Lead
- Copper
- DDE
- Biological indicators

An American coot embryo from Kesterson National Wildlife Refuge, California, with selenium-induced developmental abnormalities including a deformed lower bill and no eyes. Courtesy H. M. Ohlendorf, U.S. Fish and Wildlife Service

Selenium in Reservoir Bottom Sediment: Republican River Basin

Irrigation History and Selenium Depositional Profiles in Reservoirs

(Juracek and Ziegler, 1998)

Constituent Histories

• Selenium

• Lead

- Copper
- DDE
- Biological indicators

Total Lead Emissions in U.S. 1970 to 1998

Modified from USEPA (2000)

Lead in Bottom Sediment of Crystal Lake: Decades for Recovery Following Phase Out of Leaded Gas

Lead

Cesium-137

(Juracek, 2004; Juracek and Ziegler, 2006)

The Tri-State Mining District

Tri-State History

- Mining in the Tri-State Mining District, 1850-1970.
- World's largest lead and zinc producer until 1945.
- Cherokee County superfund site established in 1983.
- Contaminants of concern: cadmium, lead, and zinc.

Photo: Baxter Springs Heritage Center and Museum

Sec. 10

Lead in Empire Lake Bottom Sediment

≊USGS

(Juracek, 2006, 2008)

Lead in Grand Lake O' the Cherokees Bottom Sediment

Lead concentrations have decreased since about the 1980s.

Lead concentrations were less than the probable-effects guideline.

Median lead concentration was about 5 times less than Empire Lake.

≊USGS

(Juracek and Becker, 2009)

Constituent Histories

• Selenium

- Lead
- Copper
- DDE
- Biological indicators

Copper Sulfate to Control Algal Blooms

Copper in Bottom Sediment of Crystal Lake Documents Copper Sulfate Use

Copper

Cesium-137

(Juracek, 2004)

Constituent Histories

• Selenium

- Lead
- Copper
- DDE
- Biological indicators

DDT

- Peak use in 1950's and 1960's
- Banned in 1972
- Degrades to DDD and DDE

DDE in Bottom Sediment of Tuttle Creek Lake Documents History of DDT Use in Basin

DDE

≊USGS

(Juracek and Mau, 2002)

Constituent Histories

• Selenium

- Lead
- Copper
- DDE

Biological indicators

Eutrophication: A Common Problem for Lakes

(microcystis bloom)

Diatoms and Akinetes Indicators of Lake Trophic Conditions

Lake Maxinkuckee Possibly Has Become Less Eutrophic in Recent Decades

Cyclotella bodanica (oligotrophic indicator)

Cyclotella pseudostelligera (eutrophic indicator)

Cyanobacterial Akinetes Indicated Clinton Lake Became More Eutrophic

(Juracek, 2011)

Increase in Akinete Abundance at Clinton Lake Possibly Related to Increase in Phosphorus

≊USGS

(Juracek, 2011)

Benefits

- Determination of past/present environmental conditions
- Warning of potential problems
- Baseline for future assessments
- Information for management (e.g., TMDLs)

Has your lake's story been told?

Questions?

For more information

web: ks.water.usgs.gov/Kansas/ressed/ email: kjuracek@usgs.gov

